Generalized Bezout's theorem and its applications in coding theory
نویسندگان
چکیده
This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more plane curves. A new approach to determine a lower bound on the minimum distance for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d 5, these new codes are better than the known AG codes defined from whole spaces. The Klein codes [22; 16; 5] and [22; 15; 6] over GF (23), and the improved Hermitian code [64; 56; 6] over GF (24) are also constructed.
منابع مشابه
Fan-KKM Theorem in Minimal Vector Spaces and its Applications
In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.
متن کاملOrthogonal metric space and convex contractions
In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. Also, we show that there are examples which show that our main theorems are genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour, {it Approximate fixed points of generalized convex contractions}, Fixed Poi...
متن کاملApplication of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Information Theory
دوره 43 شماره
صفحات -
تاریخ انتشار 1997